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Одеська державна академія будівництва та архітектури 
 

АНАЛІТИЧНИЙ РОЗРАХУНОК КІЛЬЦЕВИХ ПЛАСТИН, ЩО 
СПИРАЮТЬСЯ НА ПРУЖНУ ОСНОВУ З ЕКСПОНЕНЦІАЛЬНОЮ 

НЕОДНОРІДНІСТЮ 
 

Розглядається задача про осесиметричний згин кільцевої пластини, що 
знаходиться під впливом сталого рівномірно розподіленого поперечного 
навантаження та опирається на неоднорідну пружну основу Вінклера. У цій 
моделі пружна основа, на яку опирається конструкція, представляється у 
вигляді набору вертикальних, близько розташованих, не пов’язаних між собою 
пружин. Таку ситуацію загалом можна описати єдиним параметром, який 
називають модулем пружності основи чи коефіцієнтом постелі. У 
найпростішому випадку, коли пружна основа вважається однорідною, 
коефіцієнт постелі є сталим, що значно спрощує розв’язання відповідних 
диференціальних рівнянь. Цим можна пояснити широко вживане припущення 
про однорідність основи. Однак таке припущення далеке від реальності і для 
більш якісних досліджень необхідно враховувати неоднорідність основи. В 
такому разі коефіцієнт постелі буде змінною величиною.  

В роботі неоднорідність пружної основи задається експоненціальною 
функцією. В аналітичному вигляді знайдено фундаментальні функції та 
частинний розв’язок відповідного диференціального рівняння. Дані функції є 
безрозмірними та представляються абсолютно і рівномірно збіжними 
степеневими рядами. В свою чергу, через вказані функції виражаються 
формули для параметрів напружено-деформованого стану пластини. 
Фактично розрахунок пластини зводиться до процедури чисельної реалізації 
явних аналітичних формул. Продемонстровано практичне застосування 
отриманих розв’язків на прикладі бетонної плити з обома закріпленими 
контурами. 
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Вступ. Конструкція, що являє собою кільцеву пластину на суцільній 
пружній основі, часто застосовується в інженерній практиці, в тому числі, в 
промисловому та цивільному будівництві, в залізничній галузі, гідротехніці, 
кораблебудуванні, аерокосмічній техніці та інших. Зокрема, у будівництві 
широко застосовуються інженерні споруди, яким притаманна в плані кругова 
форма. До них належать телевізійні вежі, димові та вентиляційні труби, опорні 
башти вітрових електростанцій, вежі радіорелейних ліній та інші. Фундаменти 
таких споруд часто являють собою пластини кільцевої форми. 

Серед великої кількості моделей пружної основи, широкого поширення 
набула так звана модель Вінклера. У цій моделі пружна основа, на яку 
опирається конструкція, представляється у вигляді набору вертикальних, 
близько розташованих, не пов’язаних між собою пружин. Таку ситуацію 
загалом можна описати єдиним параметром, який називають модулем 
пружності основи чи коефіцієнтом постелі. У найпростішому випадку, коли 
пружна основа вважається однорідною, коефіцієнт постелі є сталим, що значно 
спрощує розв’язання відповідних диференціальних рівнянь. Цим можна 
пояснити широко вживане припущення про однорідність основи. Однак таке 
припущення далеке від реальності і для більш якісних досліджень необхідно 
враховувати неоднорідність основи [1]. Зрозуміло, що в такому разі коефіцієнт 
постелі буде змінною величиною. Саме таким випадкам присвячені публікації 
авторів [2-5]. Дана робота є продовженням досліджень авторів, присвячених 
осесиметричному згину кільцевих пластин на неоднорідній пружній основі. 

Аналіз попередніх досліджень. Детальний огляд робіт, присвячених 
дослідженню згину круглих та кільцевих пластин на змінній пружній основі, 
надано в [1]. Тут після ретельного аналізу констатується, що пошук 
аналітичних розв’язків є актуальним. 

На доповнення до публікацій [6-11], результати яких раніше були 
проаналізовані авторами в [2, 5], також заслуговують бути відміченими роботи 
[12-17]. У публікації [12] досліджуються прогини та вільні коливання 
функціонально-градієнтних кругових і кільцевих секторних пластин, що 
спираються на пружну основу Пастернака та знаходяться під впливом 
рівномірного навантаження. Для отримання критичних навантажень прогину та 
основних частот для різних граничних умов використовувався метод 
диференціальної квадратури. У статті [13] розглядається термічний згин 
круглої пластини з поперечним градієнтним розподілом матеріалу, що 
розміщена на частково пружній основі. Властивості пластини змінюються по 
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товщині відповідно до степеневої функції. Автори застосовують класичну 
теорію пластин, а рівняння стійкості записані за критерієм рівноваги після 
попереднього аналізу згину. У роботі [14] досліджено згинальні властивості 
радіально функціонально-градієнтних плит (як суцільних, так і кільцевих), які 
розташовані на двопараметричній пружній основі та знаходяться під впливом 
поперечного навантаження. Матеріальні характеристики плит змінюються у 
радіальному напрямку. Аналіз проводився для різних варіантів граничних умов, 
зокрема для затиснутих і шарнірно-опертих країв. Для чисельного розв’язання 
рівнянь застосовували метод динамічної релаксації у комбінації з методом 
кінцевих різниць. Автори [15] досліджують асиметричну поведінку згину 
кільцевих функціонально-градієнтних пластин, що опираються на часткову 
пружну основу типу Вінклера за рівномірного підвищення температури. 
Крайові умови – затиснення пластин як з внутрішнього, так і з зовнішнього 
країв. Для розв’язання отриманих рівнянь використовують гібридний метод, 
який складається з аналітичних тригонометричних функцій та методу 
узагальнених диференціальних квадратур. Досліджувався як вплив пружної 
основи, так і її радіус та товщина пластини. У статті [16] представлено пружний 
осесиметричний аналіз міцності круглих і кільцевих пластин, що опираються на 
пружну основу при дії радіального навантаження. Використовується чисельний 
варіаційний метод (варіаційна диференціальна квадратура). В якості пружної 
основи використовуються моделі Вінклера та Пастернака. У роботі [17] 
досліджуються згинальні реакції осесиметричних круглих та кільцевих пластин 
для різних варіантів граничних умов. Виконується моделювання сендвіч-
структур з різною кількістю шарів.  

Аналіз публікацій в цілому засвідчує, що розробка нових аналітичних 
методів розрахунку на згин кільцевих пластин, що опираються на неоднорідну 
пружну основу, є актуальною. 

Мета. Метою роботи є подальший розвиток аналітичних методів 
розрахунку на згин кільцевих пластин, що спираються на неоднорідну суцільну 
пружну основу Вінклера.   

Матеріали та методи дослідження. Дослідження ґрунтуються на точному 
розв’язку диференціального рівняння осесиметричного згину круглих та 
кільцевих пластин. Такий розв’язок для узагальненого випадку, коли коефіцієнт 
постелі та розподілене навантаження являють собою будь-які неперервні 
функції, знайдено в роботі [18]. Також застосовується теорія степеневих рядів, 
оскільки в окремому випадку що тут розглядається, саме до таких рядів 
трансформується точний розв’язок з публікації [18]. 

Результати та обговорення. Об’єктом дослідження є кільцева пластина 
сталої циліндричної жорсткості , що опирається на суцільну неоднорідну !
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пружну основу Вінклера та знаходиться під впливом неперервно-розподіленого 
поперечного навантаження сталої інтенсивності  (рис. 1). 

 

 
Рис. 1. Кільцева пластина на змінній пружній основі 

 
Тут  і  - відповідно радіуси зовнішнього і внутрішнього контурних кіл 

пластини,  радіальна координата . 
Циліндрична жорсткість пластини обчислюється за відомою формулою 

, 

де  модуль Юнга,  товщина пластини,  коефіцієнт Пуассона. 
Осесиметричний згин пластини виникає, коли реакція пружної основи 

 та умови закріплення контурів не залежать від полярного кута . При 
такому згині в пластині діють тільки три внутрішні зусилля: радіальний  і 
окружний  згинальні моменти та радіальна поперечна сила  (рис. 2).  

 

 
Рис. 2. Згинальні моменти та поперечна сила в пластині 
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Відповідно до гіпотези Вінклера, сила реакції  основи на пластину та 
прогин  пов’язані між собою рівністю , де  
змінний коефіцієнт постелі, що характеризує неоднорідність основи (рис. 1). 
Для  в [18] прийнято форму запису , де  значення 
коефіцієнта постелі в деякій характерній точці пластини,  безрозмірна 
неперервна функція, що виражає закон зміни коефіцієнта постелі від радіальної 
координати. 

Дана робота присвячена окремому випадку, коли неоднорідність основи 
задається експоненціальною функцією 

, 

тобто тут  

.                              (1) 

Точний розв’язок та формули для параметрів стану пластини 
Диференціальне рівняння осесиметричного згину пластини має вигляд 

 .                      (2) 

В публікації [18] знайдено його точний розв’язок для довільної 
неперервної функції , який визначається формулами: 

 ;                                                      (3) 

 ,                          (4) 
де  безрозмірні константи інтегрування;  

безрозмірні фундаментальні функції відповідного однорідного 
рівняння, тобто рівняння (2) при нульовій правій частині;  безрозмірна 
функція, яка пов’язана з частинним розв’язком  неоднорідного рівняння 
(2) формулою 

. 

Також важливо зауважити, що для  має місце подання  

 .                         (5) 

Функції  та  визначаються 
рівномірно збіжними рядами, записаними по степенях безрозмірного параметру 
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 ;                             (7) 

 ; (8) 

 ;              (9) 

 ;                                          (10) 

  (11)

 Як видно, формули (8), (11) є рекурентними. За допомогою цих формул, 
по відомим початковим функціям ,  послідовно 
визначаються функції , , які названо 

твірними [18]. 
Для кута повороту та внутрішніх зусиль мають місце формули [18]: 

;                                             (12) 

 ;                                         (13) 

 ;                                         (14) 

 ;                       (15) 

 ;                     (16) 
 ;                     (17) 

 .                     (18) 

Тут через  позначено три перших безрозмірних похідні 
від функцій , тобто 

 ,          (19) 

а через  три перших безрозмірних похідні від функцій , 
тобто 

 .              (20) 
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Зважаючи на (5), для безрозмірних похідних (20) також визначені наступні 
подання [18]: 

 ;                                                   (21) 

 ;                              (22) 

 ,          (23) 

де безрозмірні похідні функцій : 
 

 .           (24) 

Подання твірних функцій степеневими рядами 
Для простоти чисельної реалізації, функцію  апроксимуємо рядом 

Маклорена 

 .                              (25) 

У випадку, що розглядається, для коефіцієнтів ряду матимемо 

 .                                                   (26) 

Зважаючи на (25), твірні функції (8), (11) також подаються степеневими 
рядами [18] 

 ,               (27) 

 ,            (28) 

причому, коефіцієнти цих рядів обчислюються за формулами: 

 ;                                           (29) 
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 ;        (31) 

 ;                                                          (32) 
 ;                                                  (33) 
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             (34) 

де 
. 

Таким чином, завдяки формулам (1), (3)-(6), (9), (12)-(24), (26)-(34) 
забезпечено можливість аналітичного розрахунку кільцевих пластин, що 
опираються на пружну основу з експоненціальною неоднорідністю, з будь 
якими граничними умовами. 

Приклад розрахунку 
Розглянемо бетонну плиту, зовнішній контур якої шарнірно обпертий, а 

внутрішній – вільний. Такому випадку відповідатимуть граничні умови: 
. 

Застосувавши для їх реалізації формули (3), (4), (13), (15), отримаємо 
лінійну неоднорідну систему рівнянь, яка в матричному вигляді запишеться 
так: ,  
де 

, 

. 

Звідси знаходимо безрозмірні константи інтегрування:  
. 

Вихідні дані для розрахунку:  
Матеріал плити ― бетон ( );  
Зовнішній радіус ; 
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Внутрішній радіус ; 
Товщина плити ; 

. 
Результати розрахунку авторським методом (АМ) в числовому форматі 

представлено в табл. 1, 2, а в графічному ― на рис. 3. 
 Таблиця 1 

Значення прогину та поперечної сили 

 
 Відносна 

похибка, % 

 Відносна 
похибка, 

% AM МСЕ АМ МСЕ 
4,5000 18,2553 18,2490 0,00 0,0000 0,0000 0,00 
4,5714 17,4171 17,4110 0,04 1,4298 1,3941 2,50 
4,6429 16,5808 16,5750 0,04 2,6756 2,5899 3,20 
4,7143 15,7458 15,7410 0,03 3,7308 3,6531 2,08 
4,7857 14,9113 14,9070 0,03 4,5881 4,4604 2,78 
4,8571 14,0765 14,0720 0,03 5,2395 5,4268 3,57 
4,9286 13,2404 13,2360 0,03 5,6761 5,8281 2,68 
5,0000 12,4019 12,3980 0,03 5,8882 5,9988 1,88 
5,0714 11,5600 11,5560 0,03 5,8651 5,7927 1,23 
5,1429 10,7136 10,7100 0,03 5,5951 5,5237 1,28 
5,2143 9,8617 9,8590 0,03 5,0656 5,1639 1,94 
5,2857 9,0033 9,0010 0,03 4,2626 4,3461 1,96 
5,3571 8,1375 8,1350 0,03 3,1713 3,2452 2,33 
5,4286 7,2637 7,2620 0,02 1,7758 1,9144 7,81 
5,5000 6,3815 6,3800 0,02 0,0593 0,0674 13,66 
5,5714 5,4907 5,4890 0,03 -1,9962 -1,7836 10,65 
5,6429 4,5914 4,5900 0,03 -4,4093 -4,7558 7,86 
5,7143 3,6840 3,6830 0,03 -7,1994 -7,5887 5,41 
5,7857 2,7696 2,7690 0,02 -10,3862 -10,5745 1,81 
5,8571 1,8493 1,8490 0,02 -13,9900 -13,8058 1,32 
5,9286 0,9253 0,9250 0,03 -18,0306 -17,8530 0,99 
6,0000 0,0000 0,0000 0,00 -22,5278 -22,4356 0,41 

 
Таблиця 2 

Значення згинальних моментів 

 
 Відносна 

похибка, 
% 

 Відносна 
похибка, 

% АМ МСЕ АМ МСЕ 

1 2 3 4 5 6 7 
4,5000 0,0000 0,0283 0,00 5,6395 5,6172 0,39 
4,5714 0,1393 0,1449 3,99 5,5610 5,5615 0,01 
4,6429 0,3690 0,3746 1,51 5,5037 5,5044 0,01 
4,7143 0,6748 0,6803 0,81 5,4662 5,4670 0,02 
4,7857 1,0423 1,0475 0,50 5,4467 5,4476 0,02 
4,8571 1,4567 1,4615 0,33 5,4432 5,4442 0,02 
4,9286 1,9029 1,9072 0,23 5,4533 5,4543 0,02 
5,0000 2,3652 2,3689 0,16 5,4745 5,4755 0,02 
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1 2 3 4 5 6 7 
5,0714 2,8274 2,8304 0,11 5,5037 5,5046 0,02 
5,1429 3,2727 3,2750 0,07 5,5376 5,5384 0,01 
5,2143 3,6837 3,6850 0,04 5,5727 5,5733 0,01 
5,2857 4,0419 4,0424 0,01 5,6051 5,6055 0,01 
5,3571 4,3283 4,3278 0,01 5,6305 5,6306 0,00 
5,4286 4,5228 4,5213 0,03 5,6443 5,6442 0,00 
5,5000 4,6043 4,6017 0,06 5,6415 5,6412 0,01 
5,5714 4,5507 4,5470 0,08 5,6169 5,6163 0,01 
5,6429 4,3385 4,3338 0,11 5,5647 5,5638 0,02 
5,7143 3,9434 3,9376 0,15 5,4788 5,4778 0,02 
5,7857 3,3396 3,3326 0,21 5,3527 5,3519 0,01 
5,8571 2,5002 2,4920 0,33 5,1794 5,1794 0,00 
5,9286 1,3968 1,3874 0,67 4,9517 4,9535 0,04 
6,0000 0,0000 0,3788 0,00 4,6618 4,7472 1,83 

 
 

  
а б 

  
в г 

Рис. 3. Графіки функцій: а – прогини; б – поперечні сили; в – радіальні згинальні моменти; г 
– окружні згинальні моменти 

 
З метою верифікації авторського методу, в табл. 1, 2 також надані 

результати розрахунку методом скінченних елементів (МСЕ) у програмному 
комплексі LIRA та вказана відносна похибка. 

 Висновки 
1. Запропоновано аналітичний метод розрахунку на осесиметричний згин 

кільцевих пластин, що опираються на суцільну пружну основу з 
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експоненціальною неоднорідністю. 
2. Оскільки АМ ґрунтується на точному розв’язку диференціального 

рівняння, отримані тут чисельні результати можна трактувати, як точні. Такі 
розв’язки є особливо цінними, оскільки вони служать критеріями, по яким 
можна оцінювати точність різного роду наближених розв’язків.  

3. Порівняння розрахунків АМ з відповідними розрахунками МСЕ у 
програмному комплексі LIRA підтверджує валідність запропонованого методу. 

4. Встановлено, що найбільша похибка МСЕ виникає в околицях точок, де 
функції внутрішніх зусиль змінюють знак.  
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ANALYTICAL DESIGN OF CIRCULATED PLATES THAT SPIRAL 

ON A SPRING BASE WITH EXPONENTIAL INHOMOIDITY 
 
The problem is considered about the axisymmetric bend of the ring plate, 

which is under the infusion of a uniformly distributed transverse tension and rests on 
a non-uniform Winkler spring base. This model has a spring base, on which the 
structure rests, which appears to be a set of vertical, closely spaced, not 
interconnected springs. This situation can be described by a single parameter called 
the base elasticity modulus and bed coefficient. In the simplest case, if the spring 
base is treated as one-piece, the coefficient of the bed is steel, which will significantly 
simplify the untangling of different differential strings. This can be explained widely 
using the assumption about the uniformity of the base. However, such an assumption 
is far from reality and for clearer investigations it is necessary to take into account the 
heterogeneity of the basis. In this case, the coefficient of the bed will be a variable 
value. In robots, the heterogeneity of the spring base is specified by an exponential 
function. In an analytical view, the fundamental functions and partial outcome of the 
differential differential equation have been identified. These functions are 
dimensionless and are represented by absolutely and uniformly similar power series. 
In turn, through the specified functions, formulas for the parameters of the stress-
strain of the plate are expressed. In fact, the development of the plate is reduced to a 
procedure for the numerical implementation of explicit analytical formulas. The 
practical installation of loosening ties on the butt of a concrete slab with generally 
secured contours has been demonstrated. 

 Keywords: ring plate; non-homogeneous spring base; Winkler hypothesis; 
variable bed coefficient; analytical design. 
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